
[Rp] Reproduction of Step width
enhancement in a pulse-driven
Josephson junction

Author date: 2020-06-29

Sabino Maggi (sabino.maggi@cnr.it)

Citation:
Sabino Maggi (2020) "[Rp] Reproduction
of Step width enhancement in a pulse-
driven Josephson junction" perm.pub
https://perm.pub/dsi:
0123456789abcdefghijklmnopq/1

Copyright:
creativecommons.org/licenses/by/4.0/
2020 © The Authors. This document is
distributed under a Creative Commons
Attribution 4.0 International license.

Introduction
A Josephson junction is a quantum mechanical device composed of two superconducting elec‐
trodes separated by a weak link [1]. For currents lower than a critical value , coupled electrons
(Cooper pairs) can cross the weak link without a potential difference (dc Josephson effect). When
the current is increased above , single electrons originated by the breakup of Cooper pairs

begin to traverse the weak link. The potential difference between the two superconducting

films becomes and a state is reached where the junction behaves as a resistance.

In modern Josephson junctions the weak link is usually a thin insulating tunnel barrier (SIS
junction) [2], a normal metal film (SNS junction) [3] or a physical nanoconstriction (ScS junction)
[4], [5]. Josephson junctions have found wide usage in several research fields, for example as
building blocks for RSFQ digital electronics or quantum computers [6], or as radiation detectors
and very sensitive magnetometers (SQUIDs) [7], [8], [9]. But the most successful application of
Josephson junctions is surely in voltage metrology. A microwave radiation of frequency can
phase lock the junction oscillations, producing the so-called Shapiro-steps, i.e., current steps at
the quantized voltages ,

where and are the Plank constant and electron charge, respectively. The ac Josephson effect
is at the basis of the current quantum voltage standard.

ICI_CIC

ICI_CIC
VVV

≠0\neq
0
= 0

ff f

VnV_nVn

Vn=nh2ef,n=1,2,...V_n = n \frac{h}{2 e} f, \quad n = 1, 2, ... %% \label{eq:voltage_steps} %% \label inside equation not working due to %% https://gitlab.com/perm.pub/baseprinter/-/issues/9V =n n f , n =
2e
h

1, 2, ...

hhh eee

perm.pub/dsi:0123456789abcdefghijklmnopq/1
Additional formats and editions available online.

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 1 of 17

https://orcid.org/0000-0002-1523-6484
https://orcid.org/0000-0002-1523-6484
https://orcid.org/0000-0002-1523-6484
mailto:sabino.maggi@cnr.it
http://creativecommons.org/licenses/by/4.0/
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

Besides its practical applications, the Josephson junction is important from a physical point of
view because it has been the first device showing a quantum mechanical effect on a macroscopic
scale.

An important research topic at the beginning of the ’90s was related to finding ways to increase
the amplitude of the current steps induced by the microwave radiation (rf-induced steps). In
fact, the stability of the lock between the phase of the junction and the applied microwave radi‐
ation – and therefore its insensitivity to noise events which might switch the junction from one
quantized voltage to another, a crucial problem for voltage standard applications – is strongly
dependent on the amplitude of the steps [10].

To increase the amplitude of the current steps, a non-sinusoidal microwave radiation may be
used. In 1990 Monaco showed that, in the limit of a voltage-biased Josephson junction, adding
together two phased microwaves of frequency and produces rf-induced current steps
whose amplitudes are larger than those observed with a sinusoidal radiation [11].

Experiments on the so-called “biharmonic drive” readily confirmed these conclusions, albeit
with some limitations due to the fact that the junctions could not realistically be considered as
voltage biased [12], [13].

Extending further the idea, Monaco showed that, still in the limit of voltage bias, if the
microwave radiation is composed of a train of delta functions, the rf-induced current steps could
become as large as the critical current .

However, a voltage bias configuration does not properly model a real Josephson junction, which
should usually be considered as current biased. Also, a pulse train composed of delta functions
is only a theoretical approximation and cannot be reproduced in actual experiments. This led to
the idea to investigate what happened to a current-biased Josephson junction irradiated by a
more realistic pulsed microwave signal [14], [15]. The reproduction of this investigation is the
object of the present work.

Computational context
A first attempt to solve this problem was made using an electronic analog simulator of a Joseph‐
son junction [16], that could compute the relation between the applied current and the voltage
(characteristic) of a current-biased junction, in the framework of the Stewart-McCumber
RSJ junction model [17], [18]. The analog simulator was fast and simple to use, and could produce
in just a few minutes on a Hewlett Packard 7475A2 pen plotter beautiful plots of the char‐
acteristics of the junction as a function of the simulated microwave signal. 1

However, even if the electronic simulation was extremely fast, the analysis of the results
required to measure by hand the amplitude of the rf-induced current steps visible on each

 characteristic, a tedious and error-prone task.

I then decided to develop a Fortran program to solve numerically the nonlinear second-order
differential equation that models the Josephson junction [17], [18]. The idea was to calculate the

 characteristics of the junction as a function of the amplitude of the microwave signal,

, for a given set of parameters characterizing the junction and the microwave, considering the
three different cases of standard sinusoidal drive, biharmonic drive and pulsed drive.

To ease comparison of the results, normalized units were used throughout the calculations. The
normalized junction voltage was and the normalized current . The main parameters of the

simulation were: hysteresis parameter , microwave frequency , amplitude of the microwave

signal , pulse width , integration time . For a given set of junction parameters, usually

different characteristics for increasing or decreasing values of were calculated.

ff f 2f2
f

2f

ICI_CIC

I−VI-
V
I − V

I−VI-
V
I − V

I−VI-
V
I −

V

I−VI-
V
I − V

αrf\alpha_\mathrm{rf}αrf

η\etaη αdc\alpha_\mathrm{dc}αdc

β\betaβ Ω\OmegaΩ
αrf\alpha_\mathrm{rf}αrf ρ\rhoρ τ\tauτ 100100100

I−VI-
V
I − V αrf\alpha_\mathrm{rf}αrf

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 2 of 17

http://www.hpmuseum.net/display_item.php?hw=74
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

The first versions of the Fortran program were compiled under DOS 6.22 with Microsoft Fortran 5.1
and run on what was then a state-of-the-art PC, probably a Compaq Deskpro 486 with a math
coprocessor, shared among several users of the lab.

The limitations of a PC for such a task soon become evident. A new simulation started automatic‐
ally each evening and took the entire night to complete. People still using the PC late in the
evening often inadvertently stopped the background process or simply shut the machine down
without checking if there was another job running. At the end, I could run a full simulation only
every two or three days.

After a few weeks of these mostly unsuccessful attempts, a colleague of another research group
proposed me to use four DEC workstations running ULTRIX for my own simulations.2 The
machines were heavily used by his group during working hours, but sat mostly idle overnight. If I
could manage to finish my runs before the start of the new work day, I was allowed to use this
idle time for my own simulations. The colleague gave me a quick crash course on Unix and I was
ready to go.

Porting my Fortran program from Microsoft Fortran 5.1 to ULTRIX was a breeze, and I quickly
learnt how to use FTP to transfer the input configuration files and the output data files contain‐
ing the results of the simulations back and forth from the DEC workstations to my Compaq 386
notebook, that was also my desktop computer.

Now each day I had four different sets of data files coming from the DEC workstations. Three of
them were obtained by irradiating the junction with a pulsed drive with decreasing values of ,

while keeping constant and . The fourth simulation was made by irradiating the junction with

a sinusoidal drive, while keeping everything else equal. This last simulation was used as a refer‐
ence, to compare the results obtained with a standard sinusoidal radiation with those obtained
with progressively shorter pulses.

Each night I changed the values of or , to study the effect of these parameters on the
behavior of the junction.

Again, the real problem was how to analyze all this data. A manual analysis like that needed with
the electronic simulator was out of consideration. I decided to try the recently released
Microsoft Visual Basic 1.0 for Windows, writing another program that calculated the size of the rf-
induced current steps visible on the characteristics of the nightly simulations, as a

function of .

The results of months of calculations were summarized in a paper published in the Journal of
Applied Physics [14].

Digging into code
I like organisation, and I try keep all my past projects on my main workstation. Thus, finding the
original source and data files of this project was only a question of locating the directory where
the project was stored. Problems started to arise when I looked at the different files. The whole
project was scattered into several directories, each containing many files with widely different
names and dates. At first, trying to find an order in that chaos seemed impossible.

Normally I would have found all information needed in many notebooks full of detailed hand‐
written notes. Unfortunately, a couple of years ago most of my work notebooks were damaged by
a water leak in the basement, and could not be recovered. The only option left was to check the
files one by one.

After a thorough inspection of the whole project I recalled that: (1) my first attempts with the
numerical simulations tried to use the more accurate McDonald-Johnson junction model [19], I
later switched to the simplified Stewart-McCumber RSJ model because it was much faster and
efficient in calculating the junction behavior [17], [18]; (2) file names attempted to reflect what
the programs actually did, at least within the limits of DOS 8+3 naming scheme: in the same dir‐

ρ\rhoρ

β\betaβ Ω\OmegaΩ

β\betaβΩ\OmegaΩ

I−VI-
V

I − V

αrf\alpha_\mathrm{rf}αrf

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 3 of 17

https://winworldpc.com/product/microsoft-fortran/5x
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

ectory I could have a file ending with a “” that provided a textual output and another file ending
with a “g” that gave a graphical output, and they differed only for a couple of DEFINESs that
controlled the conditional compilation of the proper sections of the source code.

This multiplication of files might seem senseless today, when comfortable graphical interfaces,
ultra-fast text editors with support of regular expressions and version control tools allow to
change a large set of files in just a few seconds, but at that time it was probably the fastest,
albeit very inefficient, way of working with source code; (3) the header of all source files con‐
tained detailed notes about the type of program, the compiler, the type of output and the dates
of first and last revision of the source file, considerably easing the analysis of the different
versions of the Fortran programs (Fig. 1); (4) the initial versions of the Fortran programs were
monolithic, a single source file contained the whole code, that consisted in about 1.000 lines of
Fortran. Only at a later time, better computing practices taught me to divide the monolithic code
into multiple source files, compiled and linked together with a Makefile.

Header of one of the Fortran source files. The left sidebar shows the directory structure of the
project.

Another invaluable tool to analyze the different versions of the source files was Meld, an open
source application available for all major operating systems that can perform a two- and even a
three-way comparison of files and directories. Using Meld I quickly realized that the two most
interesting source files were mcphase.for and mcp-work.for, both located in the mccumber/
directory (Fig. [fig:meld-comparison]).

The first program, mcphase.for, simulated the behavior of the junction for a single value of

read from the input configuration file mc-iv.dat, and saved the characteristic of the
junction and its phase portrait (i.e., the relation between the phase and its time derivative, the
latter being proportional to the junction voltage) in the output file mc-iv.out.

Multiple calculations with several different value of were performed by using a DOS batch file

that basically choose one by one the configuration files containing the desired values of ,
renamed them to iv.dat, run the compiled executable mcphase.exe and at the end renamed

αrf\alpha_\mathrm{rf}αrf

I−VI
-
V

I − V

VVV

αrf\alpha_\mathrm{rf}αrf

αrf\alpha_\mathrm{rf}αrf

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 4 of 17

http://meldmerge.org/
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

the file containing the results, mc-iv.out, using a consistent naming scheme. I don’t recall why
I choose this approach, but it was clearly very inefficient, as it required to prepare each day a
long series of configuration files that differed only by the value of , and to update accordingly
the DOS batch file that controlled the night calculations (Fig. [fig:batch-file]).

The second program, mcp-work.for was an improved version that could cycle across a set of
several values of , producing a different output file for each value of . To simplify the later
automatic analysis, it left out the phase portrait.

Clearly this was the program ported to the DEC workstations. Unfortunately, I could not find the
actual source file used on these machines, perhaps because I worked directly on the worksta‐
tions and never thought to copy back these files to my PCs. But Fortran is a very stable language
and making mcp-work.for work on a modern machine was very easy.

As for the Microsoft Visual Basic 1.0 code, I found only two versions of the programs and the dif‐
ferences between them were minimal. Since both programs gave exactly the same results, I
decided to stick with the version that had a still working precompiled binary file.

Porting Microsoft Fortran to modern Unix
Porting mcp-work.for to the XXI century so that it could be compiled with the modern open
source and multiplatform gfortran Fortran compiler was very easy, thanks to the stability of
the language across different versions and platforms. Only a few minor tweaks to the source
code were needed.

All work has been done on macOS, which is essentially BSD Unix with a more appealing graphical
interface, but it can be easily repeated on any modern Unix-like operating system such as Linux,
and probably even on Windows, with the support of either the Windows Subsystem for Linux (for
Windows 10) or of Cygwin (for earlier versions of the operating system).

Preprocessor directives

For reasons that go beyond my understanding Microsoft Fortran 5.1 did not use standard prepro‐
cessor directives, such as those supported by cpp or fpp, [20] but used a a slightly different pro‐
prietary syntax (Fig. [fig:preprocessor]). To support cpp, all was needed was to comment out all
the $DEFINE directives in the header section of mcp-work.for and to replace the Microsoft
Fortran 5.1 DEFINE blocks with standard cpp blocks throughout the code (Fig. [fig:preprocessor]).

The right directives are chosen now at compile-time. For example, the following command 3

runs the cpp preprocessor before the gfortran compiler, selecting only the sections of code that
produce a textual output (-Dtextout) and simulate the junction behavior with the sinusoidal
drive (-Dsingle).

Filenames
Compilers based on Fortran 77, such as Microsoft Fortran 5.1, did not support dynamic memory
allocation at runtime and required programmers to use fixed-length arrays and strings. Strings
were used rather sparingly in Fortran code, so that was not a big deal. With an exception. My
code defined the basename of all files as the 50-byte long character variable filename, attach‐
ing a proper extension to the input configuration file that contained the simulation parameters
and to the output data files with the results of the calculations.

Under DOS that was not a problem, as DOS truncates file names to only 8 characters plus 3 char‐
acters for the extension, and excess characters were simply ignored. But under Unix file names
have no practical limitations,4 and having all these 50 character-long filenames, mostly
composed by blank characters, was ugly and complicated file management, in particular when

αrf\alpha_\mathrm{rf}αrf

αrf\alpha_\mathrm{rf}αrf αrf\alpha_\mathrm{rf}αrf

$ gfortran -cpp -Dtextout -Dsingle -o mcp-work mcp-work.for

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 5 of 17

https://docs.microsoft.com/en-us/windows/wsl/
http://www.cygwin.org/
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

using the command line interface. The solution was simple, as Fortran now has the TRIM
function, that removes all trailing blanks from a string. Whenever a file is opened for reading or
for writing, TRIM() is applied on-the-fly to the filename variable,

thus removing all extra blanks from the name of the file.

Edit descriptors
Microsoft Fortran 5.1 used the backslash (\) edit descriptor to prevent the addition of a line
break at the end of a WRITE instruction. Modern Fortran compilers do not support this non-
standard edit descriptor and return an error. This problem is avoided by removing the backslash
from all WRITE instructions that include it.

Date and time
Microsoft Fortran 5.1 had two separate intrinsic subroutines to return the current date and time.
In particular, CALL GETDAT(iyr, imon, iday), saved the date in the two-byte integer vari‐
ables iyr, imon and iday, while CALL GETTIM(ihr, imin, imin, i100th) did the same
for the current time, saving the return values in the integer variables ihr, imin, imin and
i100th. The meaning of each returned variable should be self-explanatory.

Modern Fortran supports the single subroutine CALL DATE_AND_TIME(DATE, TIME, ZONE,
VALUES), where all arguments are optional and can be specified by their dummy names (i.e.,
how Fortran calls the keyword arguments of a function call). In particular, DATE, TIME and ZONE
are character variables, while VALUES is a one-dimensional array of 8 integers, where
VALUES(1:3) corresponds to the year, month and day of the month, VALUES(4) is the time dif‐
ference (in minutes) with UTC, and VALUES(5:8) are the hour, minute, second and milliseconds,
respectively.

To minimize changes to the original source code, the calls to the GETDAT and GETTIM sub‐
routines, were translated to a single call to DATE_AND_TIME, assigning the elements of the
returned array of VALUES to integer variables named as in the original code (Fig. [fig:date-time]).

Compilation with gfortran

As noted above, mcp-work.for calculates the characteristics of the simulated junction

for several different values of , producing one output file for each curve. The section
of the code that defined the names of the output files was quite convoluted,

and used the integer variable il to count the cycle number, while the three integers il2, il1
and il0 contained the hundreds, tens and units digits of il, respectively. The CHAR function
converts these integers to the corresponding ASCII characters, where ASCII code 48 corres‐
ponds to the 0 symbol and ASCII code 57 corresponds to 9. The name of the output file defined

 OPEN (UNIT = 10, FILE = TRIM(filename)//'.dat', STATUS = 'OLD')

I−VI
-
V

I − V

αrf\alpha_\mathrm{rf}αrf I−VI
-
V

I − V

 il=0
 DO alpha_rf=0.0, 50.0, 0.5
 ...
c ------ define output file name(s)
 il=il+1
 il2=INT(il/100)
 il1=INT(il/10)-il2*10
 il0=il-il1*10-il2*100
 filewrite='PU'//CHAR(il2+47)//CHAR(il1+47)//CHAR(il0+47)
 ...
 END DO ! repeat alpha_rf DO cycle

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 6 of 17

https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

in the variable filewrite was built by concatenating a trailing constant string (’PU’ in the
example above) to the three ASCII characters, using the double forward slash (//) operator.

I have no idea why I decided to build the name the output files in such a complex way, while it
would have been much simpler to use the value of . In any case, it did not work under
gfortran and prevented proper compilation of the code.

After some inspection it was apparent that the number 47 added to integer variables in the
three CHAR function calls was the source of the error, and that it should be replaced by 48. The
line defining the filewrite variable thus becomes,

With this change mcp-work.for could compile flawlessly under gfortran. What is still puzzling is
how the original line could work in Microsoft Fortran 5.1.

Visual Basic code
No attempt was made to try to run the original Visual Basic 1.0 program on a modern computer.
Visual Basic is a dead language and long since has been replaced by Visual Basic .NET, which
shares only the name with its forefather.

From the beginning, the only viable option to run a Visual Basic 1.0 application today was to
rebuild the original development environment based on DOS 6.22 and Windows 3.11 in an
emulator. The other possible alternative, try to setup an ancient PC still capable to run DOS and
Windows 3.11, albeit in principle interesting to ensure a replication of the original paper at the
hardware level, would have posed more problems than it solved, adding little to the accuracy of
the reproduction itself.

I preferred to use the Parallels Desktop emulator for macOS, but popular alternatives such as
VMware Workstation for Windows or the VirtualBox open source multi-platform emulator should
work equally well.

I created a new empty virtual machine with minimal hardware requirements and installed in
sequence DOS 6.22, Windows 3.11 and Visual Basic 1.0 (Fig. 2). While I was at it, and although I had
already reproduced the Fortran part of the project, I also decided to install Microsoft Fortran 5.1
for DOS, to try to recreate as much as possible the original work environment.

All software packages were downloaded from the WinWorld web site, an invaluable resource for
recovering old software packages. Even after so many years, the legitimacy of installing propriet‐
ary software in an emulator, might be questionable. But at the time I had regular licenses for all
the above mentioned software and I guess to be at least morally authorized to continue to use
those packages. Unfortunately, this also means that it is not possible to share the image of the
virtual machine used to run the Visual Basic program on the paper’s GitHub repository, since it
contains proprietary software.

The packages were originally distributed on several floppy disks, which had to be swapped
whenever the installer required a new disk. The installation of these software packages in an
emulator is close to how it was done back then. The only difference is that today the floppy disks
are replaced by virtual file images and swapping disks is not done mechanically but requires to
select a menu option in the emulator.

αrf\alpha_\mathrm{rf}αrf

 ...
 DO alpha_rf=0.0, 50.0, 0.5
 ...
c ------ define output file name(s)
 ...
 filewrite='PU'//CHAR(il2+48)//CHAR(il1+48)//CHAR(il0+48)
 ...
 END DO ! repeat alpha_rf DO cycle

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 7 of 17

https://www.parallels.com/
https://www.vmware.com/products/workstation-player.html
https://www.virtualbox.org/
https://winworldpc.com
https://github.com/sabinomaggi/ten-years-challenge-pulsed-drive
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

At the end of the installation process, the Windows 3.11 appeared as in Fig. 2. The default
 pixel screen resolution of Windows 3.11 was woefully meager by today’s standards but, as I

used the virtual environment almost exclusively to run the Visual Basic program, I didn’t bother
to install the video drivers that could increase the screen resolution to a more comfortable

 or pixel resolution.

The Windows 3.11 desktop as shown in the Parallels emulator. The File Manager window shows the
files generated by the Fortran mcp-work program, before being processed by the Visual Basic
program.

Using the emulator required to transfer the source and binary Visual Basic files to the emulated
DOS/Windows system. It is surely possible to make the emulated Windows 3.11 communicate with
the host operating system through the network. But I found much easier to use again a virtual
floppy disk to transfer all needed files from macOS to Windows 3.11 (and viceversa).

A new empty virtual floppy disk data.img can be easily created with the command-line utility
dd available on macOS or Linux

After creation, the virtual floppy disk must be mounted in the emulator and formatted under
DOS or Windows 3.11 in the original MS-DOS FAT file system.

This step completed the preparation of the development environment, now it was time to test
how all this behaved.

Running the programs
As already noted, mcp-work.for calculates the characteristics for a range of values of

, saving each curve in a separate output file. The lower and upper limits and the step size of

 are hardcoded in the Fortran source code ad every change requires a recompilation of mcp-

640×480640
\times
480

640 ×
480

800×600800
\times
600

800 × 600 1024×7681024
\times
768

1024 × 768

dd if=/dev/zero of=data.img bs=1440k count=1

I−VI
-
V

I − V

αrf\alpha_\mathrm{rf}αrf

αrf\alpha_\mathrm{rf}αrf

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 8 of 17

https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

work.for (a minor hassle, as the compilation takes just a couple of seconds on a modern
machine).

Also the names of the output data files are hard-coded in mcp-work.for in the filewrite
variable and are conventionally composed by a two-letter prefix (“SI” for the single drive, “BI” for
the biharmonic drive and “PU” for the pulsed drive) followed by a three-digit integer that repres‐
ents the cycle number (Section 4.5).

To avoid cluttering the mccumber/ directory that contains the Fortran source files with the
output data files produced by the simulations, I created a new directory in the main project
folder, 2020runs/, where I copied the mc-iv.dat configuration file needed to start the simula‐
tion (Fig. 1).

Running mcp-work.for requires three steps: compile mcp-work.for with the proper direct‐
ives, switch to the 2020runs/ directory and run the mcp-work executable from there. The
whole process is summarized below for the sinusoidal drive

The only modification needed to perform calculations using the pulsed drive is to change the -
Dsingle directive to -Dpulsed

On a recent (but not state-of-the art) machine the whole simulation with steps takes

around minutes for the single drive and minutes for the pulsed drive, and most of the time is
spent printing on the terminal the calculated characteristics for each value of . Such
feedback was useful at the time of the original calculation, as every new calculated point of the

 characteristics appeared on the screen after several tens of seconds, now the results
scroll on the screen at a speed that makes them almost illegible. However, to keep as faithful as
possible to the original project, I decided to continue to print the data points on the computer
screen.

The characteristics calculated with the sinusoidal drive are shown in Fig. 3 for different

values of . Without microwave radiation (), the simulation produces the well-known

 characteristic of an overdamped Josephson junction (Fig. 3a), while for non-zero values of

 the staircase-like structure of the rf-induced current steps appears on the curves
(Fig. 3b and Fig. 3c).

 characteristics of a junction with , driven by a sinusoidal microwave signal of

frequency and (a) , (b) and (c) . The rf-induced current

steps are clearly visible when . Here eta and alpha are the normalized voltage and

normalized current , respectively.

$ gfortran -cpp -Dtextout -Dsingle -o mcp-work mcp-work.for
$ cd ../2020runs/
$../mccumber/mcp-work

$ gfortran -cpp -Dtextout -Dpulsed -o mcp-work mcp-work.for
$ cd ../2020runs/
$../mccumber/mcp-work

100 αrf100~\alpha_\mathrm{rf}100 αrf

555 777
I−VI
-
V

I − V αrf\alpha_\mathrm{rf}αrf

I−VI
-
V

I − V

I−VI
-
V

I − V

αrf\alpha_\mathrm{rf}αrf αrf=0\alpha_\mathrm{rf}
=
0

α =rf 0
I−VI
-
V

I − V

αrf\alpha_\mathrm{rf}αrf I−VI
-
V

I − V

I−VI
-
V

I − V βc=0.01\beta_c
=
0.01

β =c 0.01
Ω=0.45\Omega
=
0.45

Ω = 0.45 αrf=0.0\alpha_\mathrm{rf}
=
0.0

α =rf 0.0 αrf=1.0\alpha_\mathrm{rf}
=
1.0

α =rf 1.0 αrf=2.0\alpha_\mathrm{rf}
=
2.0

α =rf 2.0
αrf>0\alpha_\mathrm{rf}
>
0

α >rf 0 η\etaη

α\alphaα

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 9 of 17

https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

For a pulsed drive, the characteristic without microwave radiation is identical to that cal‐
culated with the sinusoidal signal (Fig. 4a), while for the current steps induced by the
pulsed drive are fewer than with the sinusoidal drive and can be nearly as wide as the critical
current (compare Figs. 4a and 4c).

 characteristics of a junction with , driven by a pulsed microwave signal of

frequency for: (a) , (b) and (c) . For the rf-
induced current steps are much larger than with the standard sinusoidal drive. Here eta and
alpha are the normalized voltage and normalized current , respectively.

At the end of each run, the output files should be transferred to the Windows 3.11 virtual machine
to be processed by stepampl, the Visual Basic application described in Section 5. However
Windows 3.11 does not understand Unix line terminators and cannot read the output files without
a preliminary conversion. The conversion can be easily done in the macOS Terminal by issuing
the following command,

that changes the line terminators of the .out output files from the Unix format containing only a
line-feed (LF) to the carriage return followed by a line-feed (CR-LF) format used by all versions of
Microsoft Windows.5. The -i switch allows in-place conversion of each file. The original files are
kept adding a .bak extension.

The output files in the proper Windows compatible format can now be transferred onto the
virtual floppy disk image. When the transfer is done, the floppy disk image is unmounted from
the host operating system and mounted in the virtual machine, making it visible to Windows 3.11.
The output files are copied to an empty directory of Windows 3.11 and the Visual Basic applica‐
tion is started, either by running the precompiled stepampl.exe executable or by opening the
Visual Basic project and running the program from there (Fig. [fig:stepampl]), saving the results
in another text file with extension .STP (for steps) that could be transferred back to the host
operating system via the virtual floppy disk image.

I also briefly tried to run the original Fortran code using the Microsoft Fortran 5.1 installed in the
emulator. Compilation was fine but the resulting DOS program was extremely slow, taking about

 seconds for each cycle and about minutes in total for the sinusoidal drive, more
than a tenfold increase with respect to the native macOS version compiled with gfortran. Even
considering the overhead of the emulator, the difference is too large not to be attributed to the
low quality of the binary code generated by the Microsoft Fortran 5.1 compiler.

Results
At the time of writing the original paper the whole process had to be repeated each night for a
different set of input parameters and for a different kind of microwave signal (single, biharmonic
or pulsed).

Each night I used three of the available DEC workstations to simulate the junction behavior with
the pulsed drive, using three different values of the (normalized) width of the pulse signal, ,

I−VI
-
V

I − V

αrf>0.0\alpha_\mathrm{rf}
>
0.0

α >rf 0.0

I−VI
-
V

I − V βc=0.01\beta_c
=
0.01

β =c 0.01
Ω=0.45\Omega
=
0.45

Ω = 0.45 αrf=0.0\alpha_\mathrm{rf}
=
0.0

α =rf 0.0 αrf=5.0\alpha_\mathrm{rf}
=
5.0

α =rf 5.0 αrf=10.0\alpha_\mathrm{rf}
=
10.0

α =rf 10.0 αrf>0\alpha_\mathrm{rf}
>
0

α >rf 0

η\etaη α\alphaα

$ for f in $(ls *.out); do sed -i .bak s/$/$'\r'/ $f ; done

30−3530
-
35

30 − 35 αrf\alpha_\mathrm{rf}αrf 606060

ρ\rhoρ

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 10 of 17

https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

while keeping constant all the other parameters, such and . The only other difference in

these simulation was the range of variation of , which depended on the value of (shorter
pulses require a much larger intensity of the rf-signal to have the same effect on the junction).
The fourth workstation simulated the junction behavior with the standard sinusoidal drive, using
exactly the same set of junction parameters.

The original paper contained all the information needed to reproduce the results shown in the
figures, without having to repeat the whole analysis from scratch. The parameters used in all
runs were: hysteresis parameter , frequency of the sinusoidal or pulsed rf signal

, current bias between and , integration time , time step

.

The simulation with the sinusoidal drive was performed by varying the amplitude of the
microwave signal between and , with a step . The three simulations with

the pulsed drive were done using: (1) pulse width , , ;

(2) pulse width , , ; (3) pulse width ,

, .

The resulting output and summary files were saved in separate folders in the 2020runs/ direct‐
ory, named SINGLE/, PULS0250/, PULS125/, PULS0050/ after their DOS counterparts.

To reproduce the first and second figure of Ref. [14] I made the only concession to modernity.
Instead of trying to recreate them with the plotting program used originally, probably Origin 2.0, I
decided to write a couple of small R scripts that could automate the task. The results are shown
in Fig. 5 and Fig. 6 and, as expected, are identical to those reported in the first two figures of
Ref. [14]. The large vertical steps on the rightmost curves of Fig. 5 era the first rf-induced current
steps, that can be nearly as large as the critical current without rf bias visible in the first

 characteristic on the left.

Figure 3 of the original paper could also be easily reproduced by plotting the maxima of the
curves of Fig. 6, i.e., vs. , for the four different cases considered here.

β\betaβ Ω\OmegaΩ
αrf\alpha_\mathrm{rf}αrf ρ\rhoρ

β=0.01\beta
=
0.01

β = 0.01 Ω=0.45\Omega
=
0.45

Ω =
0.45 αdc=−5.0\alpha_\mathrm{dc}

=
-5.0

α =dc −5.0 αdc=5.0\alpha_\mathrm{dc}
=
5.0

α =dc 5.0 τ=500\tau
=
500

τ = 500
Δτ=0.01\Delta
\tau
=
0.01

Δτ = 0.01

αrf\alpha_\mathrm{rf}αrf 0.00.00.0 5.05.05.0 Δαrf=0.05\Delta
\alpha_\mathrm{rf}
=
0.05

Δα =rf 0.05
ρ=0.250\rho
=
0.250

ρ = 0.250αrf=0.0−10.0\alpha_\mathrm{rf}
=
0.0
-
10.0

α =rf 0.0 − 10.0Δαrf=0.1\Delta
\alpha_\mathrm{rf}
=
0.1

Δα =rf 0.1
ρ=0.125\rho
=
0.125

ρ = 0.125αrf=0.0−20.0\alpha_\mathrm{rf}
=
0.0
-
20.0

α =rf 0.0 − 20.0Δαrf=0.2\Delta
\alpha_\mathrm{rf}
=
0.2

Δα =rf 0.2 ρ=0.050\rho
=
0.050

ρ = 0.050αrf=0.0−50.0\alpha_\mathrm{rf}
=
0.0
-
50.0

α =rf

0.0 − 50.0 Δαrf=0.5\Delta
\alpha_\mathrm{rf}
=
0.5

Δα =rf 0.5

ICI_CIC I−VI
-
V

I −
V

Δin\Delta
i_n
Δin αrf\alpha_\mathrm{rf}αrf

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 11 of 17

https://www.originlab.com
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

 characteristics of a junction with for several values of . The junction is

irradiated by a train of pulses of repetition frequency and width . Each curve

is offset horizontally by and is labelled after the value of . The vertical dotted lines mark

the position of the zero-voltage axis (i.e., the critical current) for the curve located
immediately to the right.

I−VI
-
V

I − V β=0.01\beta
=
0.01

β = 0.01 αrf\alpha_\mathrm{rf}αrf

Ω=0.45\Omega
=
0.45

Ω = 0.45 ρ=0.05\rho
=
0.05

ρ = 0.05
4Ω4
\Omega
4Ω αrf\alpha_\mathrm{rf}αrf

ICI_CIC I−VI
-
V

I − V

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 12 of 17

https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

Dependence of the step size on the amplitude of , for . The step is the

normalized total critical current of the junction. The junction parameters are and

; (a) sinusoidal drive, (b) pulsed drive with , (c) pulsed drive with ,

(d) pulsed drive with .

Dependence of the step size on the amplitude of , for . The step is the

normalized total critical current of the junction. The junction parameters are and

; (a) sinusoidal drive, (b) pulsed drive with .

Δin\Delta
i_n
Δin αrf\alpha_\mathrm{rf}αrf n=0...4n

=
0. . .
4

n = 0...4 n=0n
=
0

n = 0
Δi0\Delta
i_0
Δi0 β=0.01\beta

=
0.
01

β = 0.01
Ω=0.45\Omega
=
0.
45

Ω = 0.45 ρ=0.250\rho
=
0.
250

ρ = 0.250 ρ=0.125\rho
=
0.
125

ρ = 0.125
ρ=0.050\rho
=
0.
050

ρ = 0.050

Δin\Delta
i_n
Δin αrf\alpha_\mathrm{rf}αrf n=0...4n

=
0. . .
4

n = 0...4 n=0n
=
0

n = 0
Δi0\Delta
i_0
Δi0 β=1.0\beta

=
1.0

β = 1.0
Ω=0.45\Omega
=
0.
45

Ω = 0.45 ρ=0.050\rho
=
0.
050

ρ = 0.050

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 13 of 17

https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

Similar considerations can be made for the reproduction of Figure 4 of the original paper, which
considers a slightly hysteretic junction with . For simplicity, I have chosen to show

instead the vs. curves for the two most significant cases of microwave signal, i.e., the

sinusoidal drive and the pulsed drive with (Fig. 7), from which the plots of Figure 4
could be easily replicated.

Code availability
All code used for this replication is available in the project’s GitHub repository. However, the
term "all" should be taken with a grain of salt. While the Fortran is truly available to everyone
and can be used as-is by compiling it with gfortran or with any other compatible modern Fortran
compiler, the Visual Basic 1.0 code poses a completely different set of problems.

First of all, it can be run only by rebuilding an exact replica of the original development environ‐
ment, as noted in Section 5. A task that without proper documentation can require a lot of trial-
and error, as the author of the present paper discovered during the course of this work, when he
found that the original code could not be imported in any later versions of Visual Basic for
Windows and even in Visual Basic 1.0 for MS-DOS, released by Microsoft in parallel with the
initial Windows version.

Second, the source code of a Visual basic program is a mix of Basic source files (having the usual
.bas extension) and of Forms objects that compose the graphical interface of the program (with
extension .frm), stored in some binary format and tied together in a container, known as a
Visual Basic project (extension .mak), as shown in Fig. [fig:vb-project]). Making things worse, a
Visual Basic project cannot be exported, the idea of code sharing or reuse across different
applications was almost unknown at the time, at least in the commercial world.

The obvious consequence is that the reproduction described here would fail to comply, at least
in part, with one of the basic requirements of the Ten Years Challenge, i.e. the availability of all
the source code used for the reproduction.

But even if Visual Basic code seems locked for eternity in its proprietary binary format, there is a
simple, albeit partial, solution to this problem, printing to a file. Printing was a true necessity
back then to inspect or debug code. Computer screens were small and editors were primitive,
the best way to have an overall view of a program during development was to print it on paper.
Visual Basic 1.0 is no exception and can easily print both the Basic source code and the layout of
each form composing the graphical interface. Once realized that, it is easy to set up a PostScript
Printer in Windows 3.11 and to print the Basic sources and the forms to two separate PostScript
files on the Windows 3.11 virtual disk. Transfer of these files to macOS is done again using the
virtual floppy disk image and, once in macOS, it is a questions of seconds to convert the Post‐
Script files to the more popular PDF format using the Preview application available in every
version of macOS. The finishing touch is to use an R script (already developed for another
project) to extract the text from the PDF file containing the Basic code, saving it to a true text
source file, so that it can be easily inspected by everyone interested in this project.

Discussion
The main problem with this reproduction was the accidental loss of all my handwritten notes
about the project, that compelled me to recover all information needed from the source and
data files. Keeping good and updated documentation about any research project is paramount
but equally important is to store all documentation in a safe location, where it can be easily
retrieved.

Today most documents are in electronic form, making them even more prone to data loss
whenever a disaster strikes. Implementing a good and reliable backup strategy on different
forms of storage media should be a mandatory requirement of any research project, and this

β=1.0\beta
=
1.0

β = 1.0
Δin\Delta
i_n
Δin αrf\alpha_\mathrm{rf}αrf

ρ=0.050\rho
=
0.050

ρ = 0.050

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 14 of 17

https://github.com/sabinomaggi/ten-years-challenge-pulsed-drive
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

1.

2.

3.

strategy should always combine local backups with backups on secondary storage locations,
physically well separated from the original data source.

Starting the project today from scratch I would make very different choices about the program‐
ming languages to use for the simulation and data analysis steps.

Fortran, despite its venerable age, is still an excellent language for scientific programming, but
today I would surely prefer Python, because of its flexibility, ease of use, and availability of excel‐
lent numerical libraries, such as NumPy and SciPy.

The main problem with Python is related to the tumultuous development of the language itself
and of the thousands of available modules, which can cause incompatibilities even with code
developed a few years ago. This problem can be, at least temporarily, be solved by using virtual
environments, but a better standardized solution is strongly needed.

Another problem is related to its nature of interpreted language. However, the presence of well-
documented Fortran and C bindings, can enhance performance of time-critical sections of code.

Starting today I would also avoid using a new language, as was Visual Basic 1.0 at the time for a
scientific project. It is true that in 1993-94 it would have been very hard to foresee the rapid
demise of Microsoft’s Visual Basic, nevertheless using a programming language only when its
main core is stable, runs on a wide array of operating systems and is accepted by a wide com‐
munity of developers is surely a safer bet.

Not every software project can afford to be as stable as TeX, the scientific typesetting system
invented by the prominent mathematician and computer scientist Donald E. Knuth, that has
reached a state where “it is unwise to make further improvements to the system [..] which
should give the same results 100 years from now that they produce today” [21]. But on the other
hand, a development environment that changes too much and too often or that is subjected to
the whims of a single software company creates more problems than it solves.

Conclusions
Going back to my old paper has been an exceptionally interesting and instructive experience and
I thank the organizers of this challenge for the opportunity offered.

However this is not only a nostalgic attitude. The reproducibility crisis is a serious issue today
[22], that undermines scientific credibility and impacts the public’s trust in science, paving the
way to all sorts of fake and unscientific beliefs. Being able to go back and reproduce what has
been done in the past could ease the retraction of published papers containing fabricated, falsi‐
fied, or modified data or results and could contribute to simplify the identification of future
frauds.

This of course requires to share and make freely available the original data and the tools used to
analyze them. A few years ago this requirement was impossible to fulfill in practice. The digital
world in which we live makes it almost inevitable.

References
Barone A, Paternò G. Physics and Applications of the Josephson Effect. Wiley; 1982. doi:
10.1002/352760278X
Gurvitch M, Washington MA, Huggins HA. High quality refractory Josephson tunnel
junctions utilizing thin aluminum layers. Applied Physics Letters. 1983;42: 472–474. doi:
10.1063/1.93974
Benz SP. Superconductor‐normal‐superconductor junctions for programmable voltage
standards. Applied Physics Letters. 1995;67: 2714–2716. doi:10.1063/1.114302

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 15 of 17

https://doi.org/10.1002/352760278X
https://doi.org/10.1063/1.93974
https://doi.org/10.1063/1.114302
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

Cybart SA, Cho EY, Wong TJ, Wehlin BH, Ma MK, Huynh C, et al. Nano Josephson
superconducting tunnel junctions in YBa2Cu3O7–\delta directly patterned with a focused
helium ion beam. Nature Nanotechnology. 2015;10: 598–602. doi:10.1038/nnano.2015.76
De Leo N, Fretto M, Lacquaniti V, Cassiago C, D’Ortenzi L, Boarino L, et al. Thickness
Modulated Niobium Nanoconstrictions by Focused Ion Beam and Anodization. IEEE
Transactions on Applied Superconductivity. 2016;26: 1–5. doi:10.1109/TASC.2016.2542286
Likharev KK, Semenov VK. RSFQ logic/memory family: a new Josephson-junction
technology for sub-terahertz-clock-frequency digital systems. IEEE Transactions on
Appiled Superconductivity. 1991;1: 3–28. doi:10.1109/77.80745
Maggi S, De Leo N, Lacquaniti V, Agostino A, Gonnelli R, Verhoeve P. Nb/Al STJ detectors
with sub-nA subgap current. Physica C: Superconductivity and its Applications. 2006;435:
103–106. doi:10.1016/j.physc.2006.01.024
Troeman AGP, Derking H, Borger B, Pleikies J, Veldhuis D, Hilgenkamp H. NanoSQUIDs based
on niobium constrictions. Nano Letters. 2007;7: 2152–2156. doi:10.1021/nl070870f
Granata C, Vettoliere A, Russo R, Fretto M, Leo ND, Enrico E, et al. Ultra High Sensitive
Niobium NanoSQUID by Focused Ion Beam Sculpting. Journal of Superconductivity and
Novel Magnetism. 2015;28: 585–589. doi:10.1007/s10948-014-2693-y
Kautz R, Hamilton C, Lloyd F. Series-array Josephson voltage standards. IEEE Transactions
on Magnetics. 1987;23: 883–890. doi:10.1109/TMAG.1987.1064949
Monaco R. Enhanced ac Josephson effect. Journal of Applied Physics. 1990;68: 679–687. doi:
10.1063/1.346798
Andreone D, Lacquaniti V, Maggi S. Experiments on Josephson Junctions Driven by a Bi-
Harmonic RF Source. Nonlinear superconductive electronics and josephson devices.
Boston, MA: Springer US; 1991. pp. 37–43. doi:10.1007/978-1-4615-3852-3_3
Andreone D, Lacquaniti V, Maggi S. Numerical and Experimental Results on Josephson
Junctions Irradiated by a Biharmonic Drive. Superconducting devices and their
applications. 1992. pp. 399–402. doi:10.1007/978-3-642-77457-7_71
Maggi S. Step width enhancement in a pulse‐driven Josephson junction. Journal of Applied
Physics. 1996;79: 7860–7863. doi:10.1063/1.362395
Maggi S. Enhanced phase locking in a Josephson junction driven by current pulses. Journal
of Low Temperature Physics. 1997;106: 399–404. doi:10.1007/BF02399645
Henry RW, Prober DE. Electronic analogs of double‐junction and single‐junction SQUIDs.
Review of Scientific Instruments. 1981;52: 902–914. doi:10.1063/1.1136689
McCumber DE. Effect of ac Impedance on dc Voltage‐Current Characteristics of
Superconductor Weak‐Link Junctions. Journal of Applied Physics. 1968;39: 3113–3118. doi:
10.1063/1.1656743
Stewart WC. Current‐voltage characteristics of superconducting tunnel junctions. Journal
of Applied Physics. 1974;45: 452–456. doi:10.1063/1.1663001
McDonald DG, Johnson EG, Harris RE. Modeling Josephson junctions. Physical Review B.
1976;13: 1028–1031. doi:10.1103/PhysRevB.13.1028
Boyanski A. FPP - A Fortran Preprocessor. Department of Energy; 1992 pp. 1–7.
Knuth DE. The Future of Tex and METAFONT. TUGboat. 1990;11: 489–. Available: https://
www.tug.org/TUGboat/tb11-4/
Miyakawa T. No raw data, no science: Another possible source of the reproducibility crisis.
Molecular Brain. 2020;13: 1–6. doi:10.1186/s13041-020-0552-2

Unfortunately, after 25 years and two relocations, I could not manage to find photographs of
the simulator nor the original HP 7475A plots.↩

The now defunct Digital Equipment Corporation (DEC) was one of the leading computer com‐
panies of the time and ULTRIX is the name of its Unix operating system.↩

The $ symbol prepended to this and to all following terminal commands represents the
prompt of the command interpreter and is not part of the command.↩

Unix allows 255 characters for the filename and 4096 characters for the path.↩

Slightly different versions of the command can be found on the internet; the format used
above is POSIX-compliant and should run on any Unix flavour↩

1.

2.

3.

4.

5.

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 16 of 17

https://doi.org/10.1038/nnano.2015.76
https://doi.org/10.1109/TASC.2016.2542286
https://doi.org/10.1109/77.80745
https://doi.org/10.1016/j.physc.2006.01.024
https://doi.org/10.1021/nl070870f
https://doi.org/10.1007/s10948-014-2693-y
https://doi.org/10.1109/TMAG.1987.1064949
https://doi.org/10.1063/1.346798
https://doi.org/10.1007/978-1-4615-3852-3_3
https://doi.org/10.1007/978-3-642-77457-7_71
https://doi.org/10.1063/1.362395
https://doi.org/10.1007/BF02399645
https://doi.org/10.1063/1.1136689
https://doi.org/10.1063/1.1656743
https://doi.org/10.1063/1.1663001
https://doi.org/10.1103/PhysRevB.13.1028
https://www.tug.org/TUGboat/tb11-4/
https://www.tug.org/TUGboat/tb11-4/
https://doi.org/10.1186/s13041-020-0552-2
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

Additional formats and editions available online. https://perm.pub/dsi:0123456789abcdefghijklmnopq/1

Archived baseprint swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc 17 of 17

https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://perm.pub/0123456789abcdefghijklmnopq/1
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc
https://archive.softwareheritage.org/swh:1:dir:82c06ae7efa47a5cb1402d311f7c3e92b63bedbc

	[Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction
	Introduction
	Computational context
	Digging into code
	Porting Microsoft Fortran to modern Unix
	Preprocessor directives
	Filenames
	Edit descriptors
	Date and time
	Compilation with gfortran

	Visual Basic code
	Running the programs
	Results
	Code availability
	Discussion
	Conclusions
	References

